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Ladder approximation to fermion quasi-particle interaction 
for exponentially varying bare potentials 
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Department of Physics, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannes- 
burg 2001, South Africa 

Received 17 December 1979, in final form 15 October 1980 

Abstract. An extension is developed of earlier work on solution of the Bethe-Salpeter 
equation for the ladder approximation, rL, to the effective interaction in a Fermi liquid. This 
permits treatment of the case of bare potentials having finite range, with a spatial 
dependence which is either exponential or is representable as the Laplace transform of 
another function, and an exponential decay in time. The integral equation is transformed to 
real space and the kernel replaced by a differential operator, in a generalisation of an 
approach developed by Hahne, Heiss, and Engelbrecht for interactions depending only on 
time. This procedure simplifies calculation of the terms in the iterative solution of the 
integral equation, as is demonstrated by explicit calculation, for several cases, of the first two 
iterative terms. It is found, in agreement with earlier results, that going from a zero-range or 
Dirac delta interaction to one of finite range can change markedly the analytic character of 
rL and its calculation. 

1. Introduction 

If an atom is introduced intp a fermion system at OK, it can interact via the bare 
potential with an atom in the Fermi sea, creating a hole which propagates forward in 
time, experiencing any number of virtual scattering events with the original atom, until 
a second atom falls into it. The sum of all Feynman diagrams representing such a 
sequence of scattering processes, with ingoing four-momenta p1 - F and p 2  and out- 
going pl ,  p 2  - E ,  as F + 0 gives the particle-hole ladder approximation rL(pl ,  p 2 ;  pl,  p 2 )  
to both the effective interaction and scattering amplitude (Nozikres 1964). 

The ladder approximation includes only the simplest diagrams but it has been used 
(Babu and Brown 1973) in conjunction with the contact interaction potential 

Vc(r, t )  =Is(r)s(r). (1) 

Equation (1) must be an idealisation of a process which has a very short, but finite, range 
in time and space. With this in mind we considered (Nettleton 1979) the potential 

V(r, r )  = I  exp(-@ltl)b(r) (2) 

and the evaluation of the ladder sum as p becomes very large, which should be a close 
physical approximation to equation (1). 

When we cannot sum the ladder diagrams term by term, we use the fact that the sum 
is the solution of the Bethe-Salpeter equation (Fetter and Walecka 1971, p 137) which 

0305-4470/81/040971+ 09$01.50 0 1981 The Institute of Physics 97 1 



972 R E Nettleton 

for a particle-hole ladder is 

x rL(pl - 4, p 2 ;  pl, p 2  - 4 )  

where U(q)  = U(qo, q )  is the four-dimensional Fourier transform of V(r ,  t ) ,  and 

(3) 

is the free-fermion Green function, 6' being the Heaviside step function and W k  = 
hk2/2m. We assume lpll = Ip2/ = pF which characterises quasi-particles of interest near 
0 K. Although the Bethe-Salpeter equation is often encountered (cf Fetter and 
Walecka 1971), techniques for its solution are in a rudimentary state of development, 
and none has been developed for potentials having a soft spatial dependence. 

The solution of equation (3) for the potential of equation (2) was undertaken 
previously (Nettleton 1979) with the aid of an approach developed by Hahne et a1 
(1977). This procedure first takes the Fourier transform of equation (3) to yield an 
equation relating the transforms 

1 
rL(p l  - 9, p 2 ;  pl, p 2  - 4 )  X 

( q ~ - w F +  wpl-q * iv)(qo-wF+wpz-q * iv) 
(6) 

where we use the fact that pl,  p 2  are on the Fermi surface to write wpl = wF = wp2, and the 
upper or lower sign before the infinitesimal is used in the appropriate sub-domain of the 
q integration. 

To solve equation (6) by the method of Hahne et a1 (1977) we replace qo + iD, = 
id/dy in the denominator, leading to a differential equation readily solvable in the 
simple case where V does not depend on r. In the more complicated case of equation 
(2) (Nettleton 1979), the differential operator was an integral over q which led to a 
difficult contour integration. The latter, in fact, posed a major stumbling block to 
application of the method and did not encourage the belief that it could readily be 
generalised to include softer interactions. Here we shall consider potentials having a 
finite range in space, where we can replace q or, in the case of spherical potentials, q in 
the denominator of equation (6) by a derivative with respect to z or z respectively. The 
resulting partial differential equation can be solved iteratively when V(r ,  t )  has the time 
dependence exp(-P1l t 1 ) .  
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When the solution to equation (6 )  has been obtained, the ( y ,  z )  transform must be 
inverted by calculating 

A simple case where all the integrals can be performed, yielding a series in negative 
powers of P1, will be discussed in § 2. The essential feature of the method is that the 
space- and time-dependence of V should be exponential, and it will work when V(r ,  t )  
is the Laplace transform of another function. Five such cases representing spherical 
potentials are considered in § 3, where equation ( 2 )  reduces in general to an integral 
over a single variable which must ultimately be performed numerically, although we 
shall give an analytic evaluation of the integrals for two of the cases considered. These 
results will be summarised in Q 4. 

2. Solution for potential damped exponentially in time and space 

To the extent that the contact potential, V,, represents the process of paramagnon 
exchange, it should be physically reasonable to represent the same process by a 
potential of very short but finite range. We shall consider here an anisotropic potential, 
which is unrealistic, but leads to a simple result which can be compared with rL 
calculated from equations (1) and (2). Having illustrated the method for this simple 
case, we go on in § 3 to take up the spherically symmetric case. 

We proceed to discuss the solution of equation (6) ,  assuming 

V(r ,  t )  = I exp(-Plltl) exp[-(P21/Xl+~221 YI + ~ 2 3 1 z l ) I  

O(y, z )  = ( 2 d 4 1  exp(-Ply) exp(-P2 * z )  

(8) 

where P1 > 0 < P2,, and X, Y, Z are the components of r. We now have 

(9) 

where PI =PI  sgn y ,  and similarly the components of P 2  are < O  when the corresponding 
component of z is negative. 

To convert equation ( 6 )  into a differential equation replace qo + iD,, q + iV,. This 
permits us to take thy Go factors out from under the integral sign, provided we assume 
the y dependence of rL to be -exp(-Bly) so that we can set 77 = 0 (cf Nettleton 1979), 
and equation (6)  becomes 

iti f ( y ,  z )  = g(y, z ) +  G(y, ~)[ i /h(2?r )~] ( iD,  +;PI 

ih ti -l 
x ( m  iD, + - p 2  'V, --V:> 2m e ( y ,  2). 

We try a solution 

which satisfies equation (10) provided that 
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(12b)  

From equation (12b) ,  we see the expansion converges if either p1 or Ipz/, or both, are 
sufficiently large. If equations ( 1 2 4  b )  are used to calculate the coefficients in equation 
(1 l), we obtain a general solution, which is complicated because the signs of and the 
components of / j 2  vary with the sub-domains of the y and t integration in equation ( 7 ) .  
It is more instructive to take p1 >> lpzl, where we obtain 

We note that the dependence on p1 and p z  has disappeared, as was found (Nettleton 
1979) in the case of equation (2). Also, rL is complex, except in the p1 + cc limit, which 
also obtains for equation ( 2 )  (after correction of an error in equation ( l l b )  of Nettleton 
1979) but not for V,. 

An alternative approximation suggested by equation ( 2 )  is to suppose that Ip2/ >> p1 

and expand in powers of Ipzl-'. 
The first two terms have the form 

As /p21 + CO with Z = O(lp213), this does not reduce to rL calculated from equation (2), 
just as equation ( 2 ) ,  in the limit p1 + 00 with Z = O(pl), does not reduce to the result of 
equation ( 1 ) .  This circumstance, that the operation of going to the limit of infinite 
damping does not commute in general with that of calculating the ladder sum, can also 
be seen in a straightforward iteration of the Bethe-Salpeter equation, without the 
differential operator techniques used here. 

3. Spherical interaction with spatial dependence representable by Laplace 
transform 

Equations (13) and (14) serve to illustrate our approach to simplifying the iterative 
solution to the Bethe-Salpeter equation by replacing qo and q with differential 
operators and taking the kernel outside the integral in equation (6). However, when 
V(r ,  t )  is spherically symmetric, additional problems arise, since it is the dependence of 
the kernel on q, but not the angular dependence, which can be treated by the methods of 
§ 2. The result is that equation (7) is replaced by an integral which must be taken over 
the angles e,, p4 as well as over y and z .  The simplest case of the spherical potential, 
where both the space- and time-dependence of V(r ,  t )  are exponential, is readily 
generalised to the case where V(r ,  t )  is a Laplace transform, and we shall consider some 
of those cases as well in the present section. These solutions may prove useful if we try 
to include higher-order diagrams by replacing the rungs of the ladder with renormalised 
interactions, so that l?(y, z )  is interpreted as the real-space equivalent of the latter. The 
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methods of this section may also find application to Fermi liquids other than 3He where 
paramagnon exchange, for which the strongly-damped potentials are a model, may not 
be dominant. 

3.1. General approach 

To treat the problem of solving equation (6) for the case of a potential V(r ,  t )  having 
exponential time decay but a more general r dependence, suppose that 

m 

C(Y,  2) =I  exp(-Phl)  [ $(PI  exp(-zp) dp, 2 = 121. (15) 
0 

We are thus assuming that V(r ,  t) has a Fourier transform and that its spatial 
dependence has an inverse Laplace transform $(p).  The exponential z dependence in 
equation (21) permits us to apply the approach developed in the preceding section, with 
the added complication that the solution depends on the additional parameter p over 
which we must integrate. 

We make the ansatz 

where 6 is the angle between q and z and Bi (i = 1,2)  the angle between q and pi. This 
will solve equation (6) provided 

(17) 
1 

X A ,  dp’ -in61 -ihp2(cos e2/m cos o)pf +hp”/(2m cos’ e) 
where p1 has the sign of y. 

From equation (7 )  we see that the nth order contribution to rL is 
I -  

where dx = sin 8, de, comes from integrating over the polar angles of z, and A,, A, 
differ only in the sign of pl. Equation (18) can be valid only if it is legitimate to invert 
the order of integration and integrate first over z ,  and indeed the examples chosen 
below will all have this property. 

Evidently the problem of calculating the higher-order A ,  by recursive application of 
equation (17) is extremely complex, and in the present section we shall limit ourselves to 

and rf?). If p1 is large or I small, the sequence of terms, F?), should decrease 
rapidly with increasing n, and the first two terms should yield a useful approximation. 
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The n = 2 term is 

x4 
-ijplx2 -i(A/m)pl cos elxp’ + (i i /2m)pI2 

-ijp1x2 -i(h/m)p2 cos e2xp’ + ( h / 2 m ) p f 2  

X 

(19) 
1 

X 

The integrals in equation (19) can be simplified via the transformation 

5 = P ’ / X ,  s = P/P’  

to yield 

The function @(() comes from the R integration of the last two factors in equation (19) 
which can be effected most easily when h t 2 / m P 1  K 1 or when h t 2 / m P 1  >> 1, and we give 
explicitly these two cases. We have (e, is the angle between pl and p2)  

P : W )  = 1 + (ht /mP1)2iP: + p i  + ~ 1 ~ 2  cos 0, -at2) 
+ ot(t i52/mp1)3)(t i52/m~l<< 1) 

(~(5) = (2m/f i52)2[-1 +&2(p:  + p ;  + p 1 p 2  cos e , ) + 0 ( ~ - ~ ) ] ( h t ’ / m ~ 1  >> 1)  (21b)  

We shall consider several cases in which the s and x integrations in equation (20)  can 
be performed, yielding an expression for r f)  in the form of a single integral over 6 which 
in general must be evaluated numerically. 

3.2. Special cases 

3.2.1. $ ( p )  = ( 2 ~ ) ~ S ( p  -p2) (p2 large and >O) .  

+pl(cos e,) +$(I .- 2 7 ) ~ 2 ( ~ ~ ~  e,) . (22b)  )I I 
If we compare equation (22b)  with equation (14), we see that Tl, is again complex 

and Re (rL) independent of 8,. Again it is true that the p2+ 00 limit of equation (22b)  
does not give the same expression as does equation (l), although the effective 
interaction becomes real in this limit. The Landau parameters FI and F2 are imaginary 

3.2.2. + ( p )  = p Y - l  exp(-a/4p)(a > 0,O 6 v 6 2 ) :  

V(r ,  t )  = 2 ( 2 7 ) - 4 ~  exp(-plltl)(a/4r)”’2~~[(ur)1’21 (23a 

where K, is a modified Bessel function. 
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where El is an exponential integral function (Abramowitz and Stegun 1964 p 228). 

To use this in equation (20) we need to approximate a([). We shall assume that 
tta:/mP1 >> 1 which corresponds to strong spatial damping, consistent with the model of 
the preceding section, and thus we adopt equation (21b). The integral in equation (20) 
can now readily be evaluated with the aid of expansions in partial fractions, and we 
obtain 

This result has qualitative similarities with equation (22b), since the Landau parameters 
F1 and F2 are imaginary and small for the case of large spatial damping (a1 and c y 2  large). 
This supports the conclusion that rL is an inadequate representation of the effective 
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interaction in 3He if the bare interaction is characterised by very large, but finite, 
damping. 

In addition to the above cases, it has been possible to evaluate ~ ( 5 )  for $ ( p ) =  
p ”  exp(-&p), for which 

and $ ( p )  = p 3  cos(&p) exp(-ep), for which 

In both cases we obtain lengthy sums for y ( 5 )  involving Whittaker functions, which will 
be omitted for the sake of brevity. These two cases, together with example 2 ,  show that 
it is not necessary for applicability of the present method that V ( r ,  t )  have an 
exponential r dependence, while example 3 shows how we may include both attractive 
and repulsive forces. 

4. Summary and conclusion 

The object of the foregoing sections has been to extend a previous work (Nettleton 
1979) which discussed the solution of the Bethe-Salpeter equation for rL, the ladder 
approximation to the effective interaction in a Fermi liquid, using a procedure for 
converting the integral equation to differential form. This approach was originally 
devised by Hahne et a1 (1977) for the case of interactions V ( t )  depending only on time 
and not on space. It proved possible to extend this (Nettleton 1979) to the case of a 
spatial dependence for V(r ,  t )  proportional to S ( r ) ,  but this led to a contour integration 
in q space which was difficult to evaluate. In the present paper, we show that the same 
mathematical difficulties do not occur when we use a bare potential having finite range. 
Specifically, we consider interactions whose r dependence can be cast in the form of a 
Laplace transform, and thus the method can be applied, in principle, to any bare particle 
potential whose inverse Laplace transform exists. 

It is instructive to compare the results we obtain for rL using soft potentials with the 
effective interaction calculated in the ladder approximation from the contact inter- 
action of equation (1). The latter is real and depends on 1p2-pll .  Equations (13), (14), 
and (20), on the other hand, are all complex and lose their momentum dependence as 
p1 += CO or p2 + 00, which are the limits in which the soft potential approaches V, when 
I = O(p1p;). It is thus evident that a change in the bare potential from zero-range to 
very short range, which may seem physically insignificant, can have a marked effect on 
the analytical character of the ladder sum, 

The fact that equation (1) led to a rL peaked at Ipl -p21 = 0 suggested that rL be 
interpreted as a scattering amplitude (Levin and Valls 1978). However, the absence of 
pronounced momentum dependence in equation (22b)  leaves us unable to assert that 
the ladder approximation is dominant in either the scattering amplitude or effective 
interaction, since the same particle-hole diagrams contribute to both. Therefore we are 
led to agree with other authors (Levin and Valls 1979) that diagram summation will 
probably not yield a reliable ansatz for the quasi-particle interaction in 3He. 
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